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We develop a new lattice Hamiltonian method for solving the Boltzmann-Uehling-Uhlenbeck (BUU) 
equation. Adopting the stochastic approach to treat the collision term and using the GPU parallel 
computing to carry out the calculations allows for a rather high accuracy in evaluating the collision 
term, especially its Pauli blocking, leading thus to a new level of precision in solving the BUU equation. 
Applying this lattice BUU method to study the width of giant dipole resonance (GDR) in nuclei, where 
the accurate treatment of the collision term is crucial, we find that the obtained GDR width of 208Pb 
shows a strong dependence on the in-medium nucleon-nucleon cross section σ ∗

NN. A very large medium 
reduction of σ ∗

NN is needed to reproduce the measured value of the GDR width of 208Pb at the Research 
Center for Nuclear Physics in Osaka, Japan.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The in-medium nucleon-nucleon (NN) cross section σ ∗
NN has 

significant effects on the dynamics of heavy-ion collisions (HICs), 
and it thus plays a crucial role in understanding the reaction mech-
anisms as well as various phenomena and observables in these 
collisions [1–6]. The importance of σ ∗

NN also lies in its intimate 
relation to the transport properties of nuclear matter [7,8] and the 
nucleon effective interactions [9]. Since a major goal of studying 
HICs is to extract the equation of state (EOS) of nuclear matter 
from experimental data [10–15], a thorough understanding of σ ∗

NN
helps reduce the uncertainties in transport models [16,17] that are 
used for describing these reactions. While the NN cross section 
in free space σ free

NN can be directly measured in experiments, the 
determination of the value of σ ∗

NN in nuclear medium usually re-
lies on theoretical investigations. These include calculations based 
on microscopic theories, such as the nonrelativistic and relativis-
tic Brueckner theories [9,18–23] and the closed time path Green’s 
function approach [24,25]. Also, there have been attempts to ex-
tract σ ∗

NN from experiments by comparing results from transport 
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model calculations, where σ ∗
NN is a crucial input, with observables 

measured in HICs that are sensitive to σ ∗
NN, e.g., the collective 

flow and nuclear stopping [1,8,26–30]. Although these studies have 
reached the consensus that the NN cross section is suppressed in 
nuclear medium, the reduction factor is still far from certainty.

The transport model used in describing HICs is a straightfor-
ward tool for studying σ ∗

NN because one of its main ingredients, 
the NN collision term, embodies the information of σ ∗

NN. Since the 
mean field or the EOS of nuclear matter is another major ingredi-
ent of one-body transport models, finding the proper observables 
that depend on σ ∗

NN rather than the nuclear EOS is essential for 
studying σ ∗

NN. One such observable is the width of nuclear giant 
dipole resonance (GDR) as it is naturally related to σ ∗

NN through 
the NN collision term in transport models. In general, the damping 
width of nuclear collective motion originates from three sources: 
1) the escape width associated with particle emissions; 2) the 
fragmentation or the Landau damping width due to couplings be-
tween single particle states and the mean field; 3) the spreading 
or collisional damping width caused by the coupling to more com-
plex states like the two-particle-two-hole (2p-2h), 3p-3h, etc. For 
a heavy nucleus at zero temperature, the width of its GDR is 
mainly exhausted by collisional damping [31–33] before the con-
tribution from deformation fluctuations appears as a result of the 
finite temperature effect [34]. In the transport model, the colli-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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sional damping is incorporated in the binary collisions of nucleons 
and thus depends directly on σ ∗

NN. It is therefore expected that the 
GDR width of a heavy nucleus in studies based on the transport 
model depends strongly on σ ∗

NN and weakly on the nuclear EOS.
The major obstacle that has so far prevented the use of trans-

port models to accurately calculate the spreading width of GDR 
is due to the fermionic nature of nucleons. Specifically, the accu-
rate treatment of Pauli blocking in transport models is challeng-
ing [16,17], especially for small amplitude nuclear collective mo-
tions. Both subtle implementations and advanced computing tech-
niques are required for overcoming this difficulty. In the present 
work, we extend the previous study using the lattice Hamiltonian 
Vlasov method based on the next-to-next-to-next-to leading or-
der (N3LO) Skyrme pseudopotential [35] to include a stochastic 
elastic NN collision term. Solving the resulting Boltzmann-Uehling-
Uhlenbeck (BUU)-type one-body transport model with the high 
computation efficiency provided by GPU parallel computing [36], 
which enables the accurate treatment of Pauli blocking in the colli-
sion term of the BUU equation, allows us to calculate precisely the 
spreading width of the GDR in nuclei. We then obtain a stringent 
constraint on the in-medium NN cross section σ ∗

NN by compar-
ing the GDR width of 208Pb from the present lattice BUU (LBUU) 
method with that measured from 208Pb(�p, �p′) reaction with polar-
ized protons at the Research Center for Nuclear Physics (RCNP) in 
Osaka, Japan [37].

2. Model description

The BUU equation is a semi-classical approximation to the 
quantum transport equation [38,39]. For a momentum-dependent 
mean-field potential U (�r, �p), it reads as

∂ f

∂t
+ �p

E
· ∇�r f + ∇�p U (�r, �p) · ∇�r f − ∇�r U (�r, �p) · ∇�p f = Ic, (1)

where f = f (�r, �p) is the one-body phase-space distribution func-
tion of nucleons or their Wigner function. The r.h.s of Eq. (1) is the 
NN collision term including the Pauli blocking effect due to the 
Fermi statistics of nucleons, i.e.,

Ic = − g

∫
d�p2

(2π h̄)3

d�p3

(2π h̄)3

d�p4

(2π h̄)3
|M12→34|2

× (2π)4δ4(p + p2 − p3 − p4)

× [ f f2(1 − f3)(1 − f4) − f3 f4(1 − f )(1 − f2)],
(2)

where g is the degeneracy, M12→34 is the in-medium transition 
matrix element, and (1 − f i) is the Pauli suppression factor. It is 
worth mentioning that higher-order quantum corrections to Eq. (1)
can be added perturbatively [40].

In the present work, we solve the BUU equation by the lattice 
Hamiltonian (LH) method [41–43], which is a variant of the usual 
test particle method [44]. In the LH method, the total Hamiltonian 
H of the system is approximated by the lattice Hamiltonian H L , 
i.e.,

H =
∫

H(�r)d�r ≈ l3
∑
α

H(�rα) ≡ H L, (3)

where H is the Hamiltonian density, �rα represents the coordinate 
of certain lattice site α, and l is the lattice spacing. For the nu-
cleon one-body phase-space distribution function fτ (�rα, �p), it is 
expressed as

fτ (�rα, �p, t) = (2π h̄)3

gNE

α,τ∑
S
[�ri(t) −�rα

]
δ
[�pi(t) − �p]

, (4)

i

where S is the form factor and NE is the number of ensembles 
or test particles used in the calculation. The sum in Eq. (4) runs 
over all test nucleons of isospin state τ that contribute to the lat-
tice site α. In the present work, we adopt a triangular form factor 
S with the size of 4l, and its detail can be found in Ref. [35]. The 
Hamiltonian in Eq. (3) contains both the Coulomb and the nuclear 
part [35] with the latter obtained from the N3LO Skyrme pseu-
dopotential [45] SP6h, whose details can be found in Ref. [46].

In the present LBUU method, the ground state of a spherical 
nucleus at zero-temperature is obtained from the Thomas-Fermi 
approach [41,47–49] via the variation of the Hamiltonian with 
respect to the radial nucleon density ρτ (r). The obtained ρτ (r)
is then used to determine the initial coordinates of test nucle-
ons, while their initial momenta are generated according to zero-
temperature Fermi distribution with local Fermi momentum given 
by pF

τ (r) = h̄
[
3π2ρτ (r)

]1/3
. This method for initialization ensures 

the stability of ground-state nuclei in BUU-like transport mod-
els [35,49].

For the collision term in the BUU equation, we implement it 
using the stochastic approach [50], which is more reliable than the 
commonly used geometric method when the mean free path λMFP

of a test nucleon is not much larger than the interaction length 
between two test nucleons [51] or when the NN scattering cross 
section is very large. The collision probability Pij of two test nucle-
ons in the stochastic approach is determined from the NN collision 
term in Eq. (2), which is

Pij = vrelσ
∗
NN S(�ri −�rα)S(�r j −�rα)l3
t. (5)

To reduce the statistical fluctuations of collision events and bet-
ter reflect the nature of the BUU equation, we include collisions of 
test nucleons from different ensembles. In this case, the collision 
probability is reduced to Pij/NE, because of the scaling σ ∗

NN →
σ ∗

NN/NE of the in-medium NN cross section between test nucle-
ons. Under such a scaling, the diluteness of the system, which is 
characterized by 

√
σ ∗

NN/λMFP, is reduced by the factor 
√

NE, and 
this makes it possible to solve the BUU equation almost exactly 
with a sufficiently large NE achieved by adopting the GPU parallel 
computing.

For the i-th and j-th test nucleons colliding at the lattice site 
�rα , the direction of their final momenta �p3 and �p4 are sampled ac-
cording to the differential cross-section given in Ref. [52]. However, 
this collision can only happen if it is allowed by the Pauli principle 
via the factor [1 − f (�rα, �p3)] ×[1 − f (�rα, �p4)]. In the present LBUU 
method, the distribution function fτ (�rα, �p) is calculated from av-
eraging its value in Eq. (4) over a given momentum-space sphere 
centered at �p with radius R p

τ (�rα, �p). In typical transport model 
calculations, R p

τ (�rα, �p) is taken to have a constant value of about 
one hundred MeV. In the present work, we use an improved form 
for R p

τ (�rα, �p) that is specifically proposed for small-amplitude nu-
clear collective dynamics near ground state [48], i.e., R p

τ (�rα, �p) =
max[
p, pF

τ (�rα) − |�p|], where pF
τ = h̄(3π2ρτ )1/3 is the local nu-

cleon Fermi momentum and 
p is a constant with the dimension 
of momentum that needs to be taken to be sufficiently small.

The treatment of Pauli blocking in transport models is crucial in 
calculating the width of nuclear collective excitations. At low inci-
dent energy or temperature, the Pauli blocking is notoriously dif-
ficult to handle in transport models [16,17]. This is mainly caused 
by the inaccuracy in calculating the local momentum distribution 
fτ (�rα, �p), which then leads to numerically spurious collisions and 
thus an overestimated GDR width as a result of the enhanced col-
lisional damping. There are three main origins for the numerically 
spurious collisions in transport models: 1) fluctuations in calculat-
ing fτ (�rα, �p) caused by insufficiently large NE; 2) spurious thermal 
excitation caused by finite 
p in calculating fτ (�rα, �p) (also see 
Ref. [48]); and 3) diffusion in local momentum caused by finite 
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lattice spacing l when averaging over different local densities on 
the nuclear surface.

In choosing the parameter values in the LBUU calculations, we 
use the following criteria. For a given l and 
p, NE should be 
large enough to eliminate the overwhelming majority of the spu-
rious collisions caused by the first origin mentioned above, and 
at the same time l and 
p should be chosen to be sufficiently 
small to suppress the effects due to the second and third origins 
on the GDR width. After careful tests based on considerations of 
numerical accuracy and computation efficiency, we find the op-
tional values of l = 0.5 fm, 
p = 0.05 GeV and NE = 30000. It is 
worth to mention that with the adoption of GPU parallel comput-
ing, it is possible to use a value for NE that far exceeds those used 
in all previous calculations based on the BUU transport equation. 
Further reducing 
p and l and increasing NE only leads to a neg-
ligible variation in the calculated GDR width.

We note that for the case of free NN cross section, an aver-
age of 97.93% of the attempted collisions in the ground state of 
208Pb are blocked by the Pauli principle, resulting in an average of 
1.30 successful collisions of physical nucleons per fm/c during the 
time evolution of 0–500 fm/c. Also, the root mean square (rms) 
radius and the ground-state energy of 208Pb vary by less than 3.6%
(0.2 fm) and 3.2% (50 MeV), respectively, during this time evolu-
tion. With a reduced in-medium NN cross section, both the num-
ber of successful collisions and the change in the radius and bind-
ing energy are even smaller. Since the binding energy decreases 
monotonically with time without oscillations, it is not expected 
to have much effect on the calculated excitation energy of GDR. 
The energy violation, which is caused by our use of in-vacuum 
energy conservation in NN scatterings, instead of the in-medium 
energy conservation in the presence of the momentum-dependent 
potential, is not expected to affect the calculated width of GDR 
either. This is because the latter is controlled by the NN scatter-
ing rate, which depends on the NN scattering cross section and 
the Pauli blocking factor. We also note that although the radius 
and binding energy variations in LBUU are larger than those in the 
lattice Hamiltonian Vlasov approach of Ref. [35], where the rms ra-
dius and the binding energy almost do not change, and the radial 
density profile only changes slightly during the time evolution of 
0–1000 fm/c, the LBUU method used in the present study is suffi-
ciently accurate for investigating the GDR width.

3. Results and discussions

The collective excitation of a nucleus consisting of A nucleons 
can be induced by adding a perturbation to its Hamiltonian at the 
initial time t0, i.e., Ĥex(t) = λQ̂ δ(t − t0), where Q̂ is an appropri-
ate excitation operator and λ is a small parameter. The width of 
a collective excitation is defined by the full width at half maxi-
mum (FWHM) of its strength function S(E) as a function of the 
excitation energy E . In the linear response theory [53], the S(E) is 
obtained from the Fourier integral

S(E) = − 1

πλ

∞∫
0

dt
〈Q̂ 〉(t)sin
Et

h̄
, (6)

where 
〈Q̂ 〉(t) = 〈0′|Q̂ |0′〉 − 〈0|Q̂ |0〉 is the time evolution of 
the response function of the nucleus to the excitation operator 
Q̂ with |0〉 and |0′〉 denoting the nuclear states before and after 
the perturbation, respectively. In terms of the Wigner transform 
q(�r, �p) of the one-body excitation operator q̂, which is related to 
Q̂ by Q̂ = ∑A

i q̂, the expectation values in the above can be eval-
uated according to 〈Q̂ 〉(t) = ∫

f (�r, �p, t)q(�r, �p)d�rd�p using the nu-
cleon phase-space distribution function f (�r, �p, t). Details on the 
Fig. 1. Time evolution of the isovector dipole response function 
〈Q̂ IVD〉 (left) 
and strength function S(E) (right) of 208Pb due to the perturbation of Ĥex =
λQ̂ IVDδ(t − t0) with λ = 15 MeV/c from the Vlasov calculation (solid lines) and 
the LBUU calculation (dashed lines) with σ free

NN . The dotted cyan curve in the left 
window represents the expectation value of the Q̂ IVD in the ground state of 208Pb
from the LBUU calculation with σ free

NN .

single-particle operator used in exciting a ground state nucleus in 
transport models can be found in Ref. [35].

We first employ the present LBUU method to study the ef-
fect of NN scatterings on the isovector dipole response of 208Pb
using the excitation operator Q̂ IVD = N

A

∑Z
i ẑi − Z

A

∑N
i ẑi . In 

Fig. 1, we show the results obtained by using the free NN elas-
tic scattering cross section taken from Ref. [52] with σ free

NN (plab) =
σ free

NN (0.1 GeV/c) for neutron-neutron (nn) or proton-proton (pp) 
collisions at plab ≤ 0.1 GeV/c and σ free

NN (plab) = σ free
NN (0.05 GeV/c)

for neutron-proton (np) collisions at plab ≤ 0.05 GeV/c, as experi-
mental data for lower incident momenta (plab) are unavailable. For 
comparison purpose, results from the LBUU calculation without 
NN scatterings, i.e., the Vlasov calculation, are also shown in Fig. 1. 
In both cases, we use in the initial perturbation the same parame-
ter λ = 15 MeV/c, which is also used in all the calculations in the 
present study, and we find that varying the value of λ by 2/3 al-
most has no effects on the value of the GDR width. As shown in 
the left window of Fig. 1 for the response function 
〈Q̂ IVD〉(t), the 
inclusion of NN scatterings significantly enhances the damping of 
the oscillations. The dotted cyan curve in the left window of Fig. 1
represents the expectation value of the Q̂ IVD in the ground state 
of 208Pb from the LBUU calculation with σ free

NN , which is negligible 
compared with that in the excited cases. To illustrate more clearly 
the effect of collisional damping, we show in the right window of 
Fig. 1 the GDR strength function S(E) from the Fourier transforma-
tion of the response function. Note that the Vlasov calculation is 
carried out for a long evolution time of 1000 fm/c when the am-
plitude of the oscillation of 
〈Q̂ 〉(t) almost vanishes so that the 
fluctuation in the calculated strength function from the Fourier 
transform of 
〈Q̂ 〉(t) is negligible. We clearly see the large in-
crease of GDR width after including NN scatterings, namely, the 
GDR width of 208Pb are 6.5 MeV and 1.5 MeV in the LBUU calcu-
lations with and without NN scatterings, respectively.

Experimentally, the GDR width of 208Pb has been well deter-
mined to be 4.0 MeV from the 208Pb(�p, �p′) reaction carried out at 
RCNP [37]. Our result from the LBUU calculation with σ free

NN thus 
significantly overestimates the GDR width of 208Pb. This is un-
derstandable because of the absence of medium effect on the NN 
scattering in the calculation. Its inclusion is expected to reduce the 
NN cross section, weaken the collisional damping, and result in a 
smaller GDR width. The sensitivity of the GDR width to NN scat-
terings shown in Fig. 1 makes it possible to constrain the medium 
effect on the NN scattering cross section.

For σ ∗
NN, we parameterize it by multiplying the free NN cross 

section with a medium-dependent correction factor. Specifically, 
we choose an exponential reduction factor as suggested by the T -
matrix approach in Ref. [20], i.e.,
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Fig. 2. The GDR width of 208Pb from LBUU calculations for different values of α
in σ ∗

NN. The horizontal line represents the RCNP experimental value of 4.0 MeV. 
The inset shows the strength function with α = 1.8 (solid line) and the shifted 
one (dash-dotted line) to match the experimental GDR peak energy. See text for 
details.

Fig. 3. Density dependence of the medium correction at different values for the total 
kinetic energy Tc.m. of two scattering nucleons using NN cross sections from Eq. (7)
with α = 1.8, the Rostock cross section with α = 0.6, and the FU4FP6 parameteri-
zation.

σ ∗
NN = σ free

NN exp

[
− α

ρ/ρnuc

1 + (Tc.m./T0)2

]
. (7)

In the above, Tc.m. is the total kinetic energy of two scattering 
test nucleons at the rest frame of the local medium or cell, ρnuc =
0.16 fm−3 is the nuclear normal density, and T0 = 0.015 GeV. For 
the parameter α, its original value in Ref. [20] is 0.6, which is 
called the Rostock cross section. In the present study, we treat 
it as a free parameter to control the strength of medium effect. 
Displayed in Fig. 2 is the GDR width � of 208Pb obtained with 
different values of α. As expected, the GDR width decreases with 
increasing α. To reproduce the experimental value of � = 4.0 MeV
measured at RCNP requires α to be as large as about 1.8, which in-
dicates a very large medium reduction of the NN scattering cross 
section.

Although an early study on the balance energy, at which the 
nucleon direct flow in HICs vanishes, favors a small medium re-
duction of the NN cross section [1], more recent studies based on 
the analysis of the collective flow and nuclear stopping data [6,29]
as well as the nucleon induced reaction cross section [30] re-
quire a large medium reduction. For comparisons, we also calculate 
the GDR width from the LBUU method with two different σ ∗

NN, 
namely, the Fuchs cross section [23], which is obtained from the 
in-medium Dirac-Brueckner T matrix, and the FU4FP6 parameter-
ization, which is preferred by the nucleon induced reaction cross 
section [30]. The value of GDR width of 208Pb calculated using the 
FU4FP6 parameterization is 4.32 MeV, which is consistent with the 
experimental data. On the other hand, the values obtained with 
the Fuchs cross section and the Rostock cross section with α = 0.6
based on microscopic calculations are 5.39 MeV and 5.59 MeV, 
respectively, which both overestimate the experimental value. In 
Fig. 3, we show the density dependence of the medium correction 
σ ∗
NN/σ free

NN at three different Tc.m. values for the NN cross section 
in Eq. (7) with α = 1.8, the Rostock cross section with α = 0.6, and 
the FU4FP6 parameterization with the isospin asymmetry δ set to 
be 0.21 as in 208Pb. The T F

c.m. ≈ 0.073 GeV in this figure repre-
sents the Tc.m. of two nucleons at the Fermi surface of normal 
nuclear matter density ρnuc. It is seen that both the α = 1.8 case 
and the FU4FP6 parameterization, which can describe the data of 
the GDR width of 208Pb, show similar medium reductions, which 
are very large compared with that from the Rostock cross section.

In the inset of Fig. 2, we further show the strength function of 
the iso-vector excitation of 208Pb from the LBUU calculation uisng 
the cross section in Eq. (7) with α = 1.8 together with the exper-
imental measurements at RCNP [37]. The LBUU result shifted to 
match the GDR peak energy is also included for comparison. As 
can be seen, our calculation nicely reproduces the shape of the ex-
perimental strength function, but overestimates the peak energy 
by about 1.4 MeV. A better agreement for the peak value could 
be achieved by varying the mean-field potential or nuclear EOS, 
which is known to significantly affect the peak energy of nuclear 
GDR [54]. Further tests show that the mean-field potential or nu-
clear EOS only weakly affects the obtained GDR width. As to the 
quantum corrections to the BUU equation [40], it is not expected to 
modify our results qualitatively as their effect on the damping of 
collective motion of heavy nucleus [55] is insignificant compared 
with that of NN scatterings.

4. Conclusions

We have used the LH method to solve the BUU transport equa-
tion with the binary collisions in the collision term treated via the 
stochastic approach. With the use of a sufficiently large number 
of test particles, the present LBUU method treats the Pauli block-
ing in the collision term of BUU equation with very high precision 
and thus significantly increases the accuracy in solving the BUU 
equation. From the accurately calculated GDR width of 208Pb, we 
have found that it depends strongly on the magnitude of the in-
medium NN cross section σ ∗

NN, and the experimentally measured 
GDR width of 208Pb from the 208Pb(�p, �p′) reaction at RCNP can 
only be reproduced with a NN cross section that is significantly 
reduced in nuclear medium. The large medium reduction of σ ∗

NN
raises challenges to microscopic calculations based on realistic NN 
interactions. Also, the effects of such a large medium reduction of 
σ ∗

NN on the widths of other modes of giant resonances in nuclei 
and on the dynamics of HICs need to be studied as it may signifi-
cantly affect the extracted information on the properties of nuclear 
matter at various densities.
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Maj, T. Ramsøy, T. Tveter, Z. Źelazny, Increase in width of the giant dipole res-
onance in hot nuclei: shape change or collisional damping?, Phys. Rev. Lett. 
74 (19) (1995) 3748–3751.

[35] R. Wang, L.-W. Chen, Z. Zhang, Nuclear collective dynamics in the lattice Hamil-
tonian Vlasov method, Phys. Rev. C 99 (4) (2019) 044609.

[36] G. Ruetsch, M. Fatica, CUDA Fortran for Scientists and Engineers: Best Prac-
tices for Efficient CUDA Fortran Programming, Morgan Kaufmann, Waltham, 
MA, 2013.

[37] A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C.A. Bertu-
lani, J. Carter, M. Dozono, H. Fujita, K. Fujita, K. Hatanaka, D. Ishikawa, M. 
Itoh, T. Kawabata, Y. Kalmykov, A.M. Krumbholz, E. Litvinova, H. Matsubara, 
K. Nakanishi, R. Neveling, H. Okamura, H.J. Ong, B. Özel-Tashenov, V.Y. Pono-
marev, A. Richter, B. Rubio, H. Sakaguchi, Y. Sakemi, Y. Sasamoto, Y. Shimbara, 
Y. Shimizu, F.D. Smit, T. Suzuki, Y. Tameshige, J. Wambach, R. Yamada, M. Yosoi, 
J. Zenihiro, Complete electric dipole response and the neutron skin in 208Pb, 
Phys. Rev. Lett. 107 (6) (2011) 062502.

[38] P. Carruthers, F. Zachariasen, Quantum collision theory with phase-space dis-
tributions, Rev. Mod. Phys. 55 (1) (1983) 245–285.

[39] G. Bertsch, S. Das Gupta, A guide to microscopic models for intermediate en-
ergy heavy in collisions, Phys. Rep. 160 (4) (1988) 189–233.

[40] A. Bonasera, V.N. Kondratyev, A. Smerzi, E.A. Remler, Nuclear dynamics in the 
Wigner representation, Phys. Rev. Lett. 71 (4) (1993) 505–508.

[41] R.J. Lenk, V.R. Pandharipande, Nuclear mean field dynamics in the lattice 
Hamiltonian Vlasov method, Phys. Rev. C 39 (6) (1989) 2242–2249.

[42] H.M. Xu, W.G. Lynch, P. Danielewicz, G.F. Bertsch, Disappearance of fusion-
like residues and the nuclear equation of state, Phys. Rev. Lett. 65 (7) (1990) 
843–846.

[43] H.M. Xu, Disappearance of flow in intermediate-energy nucleus-nucleus colli-
sions, Phys. Rev. Lett. 67 (20) (1991) 2769–2772.

[44] C.-Y. Wong, Dynamics of nuclear fluid. VIII. Time-dependent Hartree-Fock 
approximation from a classical point of view, Phys. Rev. C 25 (3) (1982) 
1460–1475.

[45] F. Raimondi, B.G. Carlsson, J. Dobaczewski, Effective pseudopotential for energy 
density functionals with higher-order derivatives, Phys. Rev. C 83 (5) (2011) 
054311.

[46] R. Wang, L.-W. Chen, Y. Zhou, Extended Skyrme interactions for transport 
model simulations of heavy-ion collisions, Phys. Rev. C 98 (5) (2018) 054618.

[47] P. Danielewicz, Determination of the mean-field momentum-dependence using 
elliptic flow, Nucl. Phys. A 673 (1–4) (2000) 375–410.

[48] T. Gaitanos, A.B. Larionov, H. Lenske, U. Mosel, Breathing mode in an improved 
transport approach, Phys. Rev. C 81 (5) (2010) 054316.

[49] H. Lin, P. Danielewicz, One-body Langevin dynamics in heavy-ion collisions at 
intermediate energies, Phys. Rev. C 99 (2) (2019) 024612.

[50] P. Danielewicz, G.F. Bertsch, Production of deuterons and pions in a transport 
model of energetic heavy-ion reactions, Nucl. Phys. A 533 (1991) 712–748.

[51] Z. Xu, C. Greiner, Thermalization of gluons in ultrarelativistic heavy ion col-
lisions by including three-body interactions in a parton cascade, Phys. Rev. C 
71 (6) (2005) 064901.

[52] J. Cugnon, D. L’Hôte, J. Vandermeulen, Simple parametrization of cross-sections 
for nuclear transport studies up to the GeV range, Nucl. Instrum. Methods Phys. 
Res., Sect. B, Beam Interact. Mater. Atoms 111 (3–4) (1996) 215–220.

[53] A. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-
Hill, New York, 1971.

[54] L. Trippa, G. Colò, E. Vigezzi, Giant dipole resonance as a quantitative constraint 
on the symmetry energy, Phys. Rev. C 77 (6) (2008) 061304(R).

[55] V. Kondratyev, A. Smerzi, A. Bonasera, Dynamics of a quantal system, Nucl. 
Phys. A 577 (3–4) (1994) 813–828.

http://refhub.elsevier.com/S0370-2693(20)30336-1/bib497476DFC8F5C8B69DA9853506225219s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib497476DFC8F5C8B69DA9853506225219s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib497476DFC8F5C8B69DA9853506225219s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib497476DFC8F5C8B69DA9853506225219s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib497476DFC8F5C8B69DA9853506225219s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibD7C77FFB7F2A7966FDF5A2C9DEB6D75Bs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibD7C77FFB7F2A7966FDF5A2C9DEB6D75Bs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibD7C77FFB7F2A7966FDF5A2C9DEB6D75Bs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib821C774F5421C3B916B60E96C338BB47s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib821C774F5421C3B916B60E96C338BB47s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib821C774F5421C3B916B60E96C338BB47s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibCAF53BDA26BF277BB2C2FEF66E0882A5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibCAF53BDA26BF277BB2C2FEF66E0882A5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibCAF53BDA26BF277BB2C2FEF66E0882A5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib577F86D07F1ABAB1D9F67BC2CFCD87E2s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib577F86D07F1ABAB1D9F67BC2CFCD87E2s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib577F86D07F1ABAB1D9F67BC2CFCD87E2s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1B55B131CE7234C7595F255F02AFD024s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1B55B131CE7234C7595F255F02AFD024s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1B55B131CE7234C7595F255F02AFD024s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib4DC6116BA6DF522D80B455B7F29A2B8Bs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib4DC6116BA6DF522D80B455B7F29A2B8Bs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib4DC6116BA6DF522D80B455B7F29A2B8Bs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibF1182D3E322DAF9A90CFC1CFAFD8588Ds1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibF1182D3E322DAF9A90CFC1CFAFD8588Ds1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib03CA8CDB20789A88F01B377522E1BA49s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib03CA8CDB20789A88F01B377522E1BA49s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib0CFCEDFB77E6457A49342591F910EA4Ds1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib0CFCEDFB77E6457A49342591F910EA4Ds1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib8B0E0123E45F0CB84858B4C4811BF9C1s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib8B0E0123E45F0CB84858B4C4811BF9C1s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib86DAC55DD84D5FB62537191CADB53B08s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib86DAC55DD84D5FB62537191CADB53B08s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib9A698E6A5914280EB23D768745A6852As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib9A698E6A5914280EB23D768745A6852As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib9A698E6A5914280EB23D768745A6852As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib9A698E6A5914280EB23D768745A6852As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib9A698E6A5914280EB23D768745A6852As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib0E5C6034D94F651562106376A401C68As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib0E5C6034D94F651562106376A401C68As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib0E5C6034D94F651562106376A401C68As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib37AB7298DD78090035B77BB9340ED424s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib37AB7298DD78090035B77BB9340ED424s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib37AB7298DD78090035B77BB9340ED424s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib57A4E52F6EAC74E277412CDA36C00CA7s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib57A4E52F6EAC74E277412CDA36C00CA7s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib57A4E52F6EAC74E277412CDA36C00CA7s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib57A4E52F6EAC74E277412CDA36C00CA7s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib57A4E52F6EAC74E277412CDA36C00CA7s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib57A4E52F6EAC74E277412CDA36C00CA7s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib57A4E52F6EAC74E277412CDA36C00CA7s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibE1C975DF22B5A77D0F42AEEBE01ED521s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibE1C975DF22B5A77D0F42AEEBE01ED521s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibE1C975DF22B5A77D0F42AEEBE01ED521s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibE1C975DF22B5A77D0F42AEEBE01ED521s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibE1C975DF22B5A77D0F42AEEBE01ED521s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibE1C975DF22B5A77D0F42AEEBE01ED521s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibDB975283BE4491B2BBF5ED07D0CD9BE9s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibDB975283BE4491B2BBF5ED07D0CD9BE9s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib0CA8B227522CA659A442391C6EA1BCB6s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib0CA8B227522CA659A442391C6EA1BCB6s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib85194195B391DE50F99B31F28179B6D1s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib85194195B391DE50F99B31F28179B6D1s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib48DA07B3EBD7CB58D39077998462383Cs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib48DA07B3EBD7CB58D39077998462383Cs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib091C46063D2DBE05304559B1BEAEC4A5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib091C46063D2DBE05304559B1BEAEC4A5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib091C46063D2DBE05304559B1BEAEC4A5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib745E2ECF61A499D38E85B4ABB7794A41s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib745E2ECF61A499D38E85B4ABB7794A41s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib881964CC21180FE7A3AAF6E5D413FD3As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib881964CC21180FE7A3AAF6E5D413FD3As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib881964CC21180FE7A3AAF6E5D413FD3As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibC4588744D3C3B771F0514E03063070CEs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibC4588744D3C3B771F0514E03063070CEs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib3D34E59CC8CEE601FEA62D1EBDF52F9As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib3D34E59CC8CEE601FEA62D1EBDF52F9As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib3D34E59CC8CEE601FEA62D1EBDF52F9As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib7F30EA5EDD33CAC6EA82EF313E3032EBs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib7F30EA5EDD33CAC6EA82EF313E3032EBs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib7F30EA5EDD33CAC6EA82EF313E3032EBs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib5587B12CA1402F07508D7022FFBD8982s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib5587B12CA1402F07508D7022FFBD8982s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib5587B12CA1402F07508D7022FFBD8982s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib737864E7DFCD9276F139C16862F3BE58s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib737864E7DFCD9276F139C16862F3BE58s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib737864E7DFCD9276F139C16862F3BE58s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib737864E7DFCD9276F139C16862F3BE58s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib737864E7DFCD9276F139C16862F3BE58s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibA1C7C913B603C57F57CEB8DFA9B87791s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibA1C7C913B603C57F57CEB8DFA9B87791s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibA1C7C913B603C57F57CEB8DFA9B87791s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibF3BB7D6AAE36B9F2ADD638D68247BFC6s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibF3BB7D6AAE36B9F2ADD638D68247BFC6s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibF3BB7D6AAE36B9F2ADD638D68247BFC6s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib44B3CABA603E843D1A5C10DD1317F344s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib44B3CABA603E843D1A5C10DD1317F344s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibE4E05A9DBB35072E880AE899B76B7411s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibE4E05A9DBB35072E880AE899B76B7411s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibB34745B87A989CC2333B379AD671780Ds1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibB34745B87A989CC2333B379AD671780Ds1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibB34745B87A989CC2333B379AD671780Ds1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibB34745B87A989CC2333B379AD671780Ds1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib254809D5F801DDB992E731F7A1A465C6s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib254809D5F801DDB992E731F7A1A465C6s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib53D6FEB16CC44809ED60F3F1F2F26921s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib53D6FEB16CC44809ED60F3F1F2F26921s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib53D6FEB16CC44809ED60F3F1F2F26921s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1654F2894BDA627E4C836A07615C6DB5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1654F2894BDA627E4C836A07615C6DB5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1654F2894BDA627E4C836A07615C6DB5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1654F2894BDA627E4C836A07615C6DB5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1654F2894BDA627E4C836A07615C6DB5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1654F2894BDA627E4C836A07615C6DB5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1654F2894BDA627E4C836A07615C6DB5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1654F2894BDA627E4C836A07615C6DB5s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibFEE8631D9FD1DB2B29392B9037F72E79s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibFEE8631D9FD1DB2B29392B9037F72E79s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib26887D2BC1F757DCF04B70E8C80209FCs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib26887D2BC1F757DCF04B70E8C80209FCs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib2E3A3F10BD21B10CC2AAA16C40DF83E2s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib2E3A3F10BD21B10CC2AAA16C40DF83E2s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib7FB05369803BD7F0760F39A2E047B927s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib7FB05369803BD7F0760F39A2E047B927s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib200ACD8E7C8A9CA97C480A66C375BA8Fs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib200ACD8E7C8A9CA97C480A66C375BA8Fs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib200ACD8E7C8A9CA97C480A66C375BA8Fs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib2D18ECE6A6CF19E8BD04EC1F7396F35As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib2D18ECE6A6CF19E8BD04EC1F7396F35As1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib84DDA3EF93641B0D09423E048C3A8392s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib84DDA3EF93641B0D09423E048C3A8392s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib84DDA3EF93641B0D09423E048C3A8392s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib75AC3FD211CF82F29E8837BCA16561A0s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib75AC3FD211CF82F29E8837BCA16561A0s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib75AC3FD211CF82F29E8837BCA16561A0s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib2E149432E26A97EA9E0EE05681F51024s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib2E149432E26A97EA9E0EE05681F51024s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib54B07931B7F880E04AE0B0DFA249A0E9s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib54B07931B7F880E04AE0B0DFA249A0E9s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibB462B55B637F524E2BF7A5C8867DB974s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibB462B55B637F524E2BF7A5C8867DB974s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibB2DF444B14AED0A904F15EEC0EFDC7C8s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibB2DF444B14AED0A904F15EEC0EFDC7C8s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1BACD602624FEE58BDD456B7BFC64756s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib1BACD602624FEE58BDD456B7BFC64756s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib0CFB6065D6C5F6AA21118D4C6C1098C7s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib0CFB6065D6C5F6AA21118D4C6C1098C7s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib0CFB6065D6C5F6AA21118D4C6C1098C7s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibBE30DB49EFD564213D23D233F1E9F5CAs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibBE30DB49EFD564213D23D233F1E9F5CAs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibBE30DB49EFD564213D23D233F1E9F5CAs1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib48C984110D9F00FDB7FDA1737A851AD1s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib48C984110D9F00FDB7FDA1737A851AD1s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibAB7D830F9AE5F3811C828A2F7DB1E8E4s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bibAB7D830F9AE5F3811C828A2F7DB1E8E4s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib8C1B1AB635F036530813FBC3BEB89BF2s1
http://refhub.elsevier.com/S0370-2693(20)30336-1/bib8C1B1AB635F036530813FBC3BEB89BF2s1

	Constraining the in-medium nucleon-nucleon cross section from the width of nuclear giant dipole resonance
	1 Introduction
	2 Model description
	3 Results and discussions
	4 Conclusions
	Acknowledgements
	References


