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Abstract
We study the evolution of a chemically equilibrating quark–gluon plasma in a
(3+1)-dimensional spacetime at finite baryon density and its photon production.
We find that the photon production is a strongly decreasing function of the ratio
of quark chemical potential to temperature.

1. Introduction

Photon production as a signature of the formation of the quark–gluon plasma (QGP) in
relativistic heavy ion collisions has been studied by many researchers [1, 2]. Authors of [1]
have studied the photon production in a QGP at finite temperature. Traxler, Vija and Thoma
have computed the photon production rate of a QGP at finite quark chemical potential for
a given temperature (also a given energy density) [2]. Authors of [3, 4] have studied the
photon production in a chemically equilibrating and longitudinally expanding baryon-free
QGP system. Authors of [5] have computed photons from a chemically equilibrating and
longitudinally expanding QGP system at finite baryon density. However, in calculations of
photons and dileptons the evolutions of the chemically equilibrating QGP system are almost
described as a longitudinal scaling expansion [4–9]. In order to improve the description of
the evolution, some authors have discussed the transverse expansion, and superimposed the
transverse expansion on longitudinal expansion to study the effect of the evolution of the
system on the production [10].

For comparison with the experiment it is necessary to study the photon production in a
QGP system with full evolution. In this work, we study the photon production in a chemically
equilibrating QGP system with (3+1)-dimensional hydrodynamic expansion at finite baryon
density to reveal the effects of the quark chemical potential and evolution on the production.
The expansion of the QGP system is governed by conservation laws of the energy–momentum
and baryon number, as well as entropy increase. From these, based on the parton distribution
function in a chemically equilibrating QGP system at finite baryon density, we derive a set
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Figure 1. The calculated distributions of temperature T and quark chemical potential µq of the
QGP system along the r direction at z = 0 for initial values τ0 = 0.25, λg0 = 0.34, λq0 = 0.068,
λs0 = 0.034 and µq0/T0 = 1 at the initial energy density ε = 61.4 GeV fm−3. Curves 1–8 denote,
in turn, the distributions of the temperature T, quark chemical potential µq and fugacities λg and
λq at evolution times t = 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85 and 0.95 fm.
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Figure 2. The calculated distributions of fugacities λg and λq of the QGP system along the
r direction at z = 0 for initial values as given in figure 1. Curves 1 to 8 denote, in turn,
the distributions of the temperature T, quark chemical potential µq and fugacities λg and λq at
evolution times t = 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85 and 0.95 fm.

of relativistic hydrodynamic equations (RHE) in a (3+1)-dimensional spacetime. Further
considering the reactions leading to chemical equilibrium: gg � ggg, gg � qq̄, gg � ss̄

and qq̄ � ss̄, we get a set of master equations describing the evolutions of gluon, quark
and s quark densities. Combining the RHE together with the master equations, finally, we
gain a set of coupled relaxation equations. Then we compute the photon production rate
from annihilation qq̄ → gγ , Compton (qg → qγ and q̄g → q̄γ ) scatterings, near-collinear
bremsstrahlung and inelastic pair annihilation [13, 14] processes in the QGP system.

2. Calculated results

Here, we focus on discussing Au197+Au197 central collisions. With the help of [6, 9, 15] we
take initial values: τ0 = 0.25 fm, λg0 = 0.34, λq0 = 0.068 and λs0 = 0.034 at initial energy
density ε0 = 61.4 GeV fm−3. We have shown the calculated distributions of the temperature
T, quark chemical potential µq , fugacities λg and λq along the r direction at z = 0 for µq0/

T0 = 1 in figures 1 and 2. We find that the evolution of the present model is much faster than
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Figure 3. The calculated total photon spectra from qq̄ → gγ, qg → qγ, q̄g → q̄γ , inelastic
pair annihilation and bremsstrahlung processes for those initial values given in figure 1. The
total spectra calculated by the present model is shown in the left panel, and by the longitudinally
expanding model in the right panel. Curves 1–3 are, respectively, the calculated photon spectra for
initial ratios µq0/T0 = 0.1, 0.5 and 1.

the one of the one-dimensional model (see [8, 16]). We have calculated the photon yield due to
the qq̄ → gγ, qg → qγ, q̄g → q̄γ , bremsstrahlung and inelastic pair annihilation processes
on the basis of the evolutions for initial ratios µq0/T0 = 0.1, 0.5 and 1 [17] (see the left panel
of figure 3). Since with increase of the initial quark chemical potential the anti-quark density
goes down, the yield for the processes qq̄ → gγ, q̄g → q̄γ and inelastic pair annihilation
necessarily decreases. Especially, for a given initial energy density, with increase of the
initial quark chemical potential the initial temperature of the system will obviously go down
to cause the decrease of the yield. Thus, with increasing the initial quark chemical potential
the photon yield for qg → qγ and bremsstrahlung processes also goes down; moreover, the
decrease of the yield for the processes qq̄ → gγ, q̄g → q̄γ and inelastic pair annihilation
becomes even faster. For comparison with the calculated photon yield by the longitudinal
scaling expansion model [5, 8], we also calculated the photon yield for the same four reaction
processes and initial conditions as mentioned above (see the right panel of figure 3). We find
that the calculated photon yield by the present model is less than that by the longitudinally
expanding model by about one order of magnitude because the evolution of present model is
even faster due to the presence of the transverse flow besides the longitudinal flow. Comparing
with the results of [14], we also note that the result is less than that calculated by the transverse
expansion model by about two orders of magnitude due to the effect of the chemical potential
on the yield besides those reasons mentioned above.

3. Summary

Based on the evolution of the QGP system in a (3+1)-dimensional spacetime, we have
computed the photon yield of the QGP system. We find that with increasing the ratio of quark
chemical potential to temperature, the total photon yield is strongly suppressed. Especially,
since in the present evolution model there exists the transverse flow besides the longitudinal
flow, which leads to the quick cooling of the system, the photon yield becomes much lower
than those calculated by the longitudinally expanding QGP model. This prediction of photon
suppression is important for experiments at the RHIC.
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