CAS OpenIR  > 中科院上海应用物理研究所2011-2018年
PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity
Ma, YF; Zhang, WJ; Wang, ZH; Wang, Z; Xie, Q; Niu, HY; Guo, H; Yuan, Y; Liu, CS; Liu, CS (reprint author), East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China.
2016
Source PublicationACTA BIOMATERIALIA
ISSN1742-7061
Volume44Pages:110-124
Subtype期刊论文
AbstractCalcium phosphate (CaP) scaffolds have been widely used as bone graft substitutes, but undesirable mechanical robustness and bioactivity greatly hamper its availability in clinic application. To address these issues, PEGylated poly (glycerol sebacate) (PEGS), a hydrophilic elastomer, was used to modify a model calcium phosphate cement (CPC) scaffold for bone regeneration in this study. The PEGS pre-polymer with PEG content from 0% to 40% was synthesized and was subsequently coated onto the pre-fabricated CPC scaffolds by facile infiltration and thermal-crosslink process. Compression strength and toughness of the CPC/PEGS composite scaffold (defined as CPX/Y, X referred to the PEG content in PEGS and Y referred to PEGS amount in final scaffold) were effectively tailored with increasing coating amount and PEG content, and CPX/Y exhibited an optimal compressive strength of 3.82 MPa and elongation at break of 13.20%, around 5-fold and 3-fold enhancement compared to the CPC. In vitro cell experiment with BMSCs as model indicated that coating and PEG-modified synchronously facilitated cell attachment and proliferation in a dose-dependent manner. Particularly, osteogenic differentiation of BMSCs on PEGS/CPC scaffold was strongly enhanced, especially for CP20/18. Further in vivo experiments confirmed that PEGS/CPC induced promoted osteogenesis in striking contrast to CPC and PGS/CPC. Collectively, hybrids scaffolds (around 18% coating amount and PEG content from 20% to 40%) with the combination of enhanced mechanical behavior and up-regulated cellular response were optimized and PEGS/CaP scaffolds can be deemed as a desirable option for bone tissue engineering. Statement of Significance Insufficient mechanical robustness and bioactivity still limit the availability of calcium phosphate (CaP) scaffolds in clinic application. Herein, calcium phosphate cement (CPC) scaffold, as a model CaP-matrix material, was modified with PEGylated PGS (PEGS) polymers by facile infiltration and thermal-crosslink process. Such biomimetic combination of PEGS and CaP-matrix porous scaffold was first explored, without affecting its porous structure. In this study, CPC scaffold was endowed with robust mechanical behavior and promoted bioactivity by simultaneously optimizing the amount of polymer coating and the PEG content in PGS. In rat critical-sized calvarial defects repairing, osteogenic efficacy of PEGS/CPC further demonstrated the potential for application in bone tissue regeneration. The design concept proposed in this study might provide new insights into the development of future tissue engineering materials. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
KeywordCap Scaffolds Pegylated Pgs Enhanced Mechanical Behavior Osteogenic Capacity Bone Tissue Engineering
DOI10.1016/j.actbio.2016.08.023
Indexed BySCI
Language英语
WOS IDWOS:000385594700010
Citation statistics
Document Type期刊论文
Identifierhttp://ir.sinap.ac.cn/handle/331007/26594
Collection中科院上海应用物理研究所2011-2018年
Corresponding AuthorYuan, Y; Liu, CS (reprint author), East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China.
Recommended Citation
GB/T 7714
Ma, YF,Zhang, WJ,Wang, ZH,et al. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity[J]. ACTA BIOMATERIALIA,2016,44:110-124.
APA Ma, YF.,Zhang, WJ.,Wang, ZH.,Wang, Z.,Xie, Q.,...&Liu, CS .(2016).PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.ACTA BIOMATERIALIA,44,110-124.
MLA Ma, YF,et al."PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity".ACTA BIOMATERIALIA 44(2016):110-124.
Files in This Item: Download All
File Name/Size DocType Version Access License
PEGylated poly(glyce(5936KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Ma, YF]'s Articles
[Zhang, WJ]'s Articles
[Wang, ZH]'s Articles
Baidu academic
Similar articles in Baidu academic
[Ma, YF]'s Articles
[Zhang, WJ]'s Articles
[Wang, ZH]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Ma, YF]'s Articles
[Zhang, WJ]'s Articles
[Wang, ZH]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.