Knowledge Management System Of Shanghai Institute of Applied Physics, CAS
Effects of sintering temperature on surface morphology/microstructure, in vitro degradability, mineralization and osteoblast response to magnesium phosphate as biomedical material | |
Wang, ZW; Ma, YH; Wei, J; Chen, X; Cao, LH; Weng, WZ; Li, Q; Guo, H; Su, JC | |
2017 | |
Source Publication | SCIENTIFIC REPORTS
![]() |
ISSN | 2045-2322 |
Volume | 7Pages:- |
Subtype | 期刊论文 |
Abstract | Magnesium phosphate (MP) was fabricated using a chemical precipitation method, and the biological performances of MP sintered at different temperatures as a biomedical material was investigated. The results indicated that the densification and crystallinity of MP increased as the sintering temperature increased. As the sintering temperature increased, the degradability of MP in PBS decreased, and the mineralization ability in SBF significantly increased. In addition, the MP sintered at 800 degrees C (MP8) possessed the lowest degradability and highest mineralization ability. Moreover, the positive response of MG63 cells to MP significantly increased as the sintering temperature increased, and MP8 significantly promoted the cell spreading, proliferation, differentiation and expressions of osteogenic differentiation-related genes. Faster degradation of MP0 resulted in higher pH environments and ion concentrations, which led to negative responses to osteoblasts. However, the appropriate degradation of MP8 resulted in suitable pH environments and ion concentrations, which led to positive responses to osteoblasts. This study demonstrated that the sintering temperature substantially affected the surface morphology/microstructure, degradability and mineralization, and osteoblasts response to magnesium phosphate. |
DOI | 10.1038/s41598-017-00905-2 |
Indexed By | SCI |
Language | 英语 |
WOS ID | WOS:000398824300040 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.sinap.ac.cn/handle/331007/27306 |
Collection | 中科院上海应用物理研究所2011-2020年 |
Recommended Citation GB/T 7714 | Wang, ZW,Ma, YH,Wei, J,et al. Effects of sintering temperature on surface morphology/microstructure, in vitro degradability, mineralization and osteoblast response to magnesium phosphate as biomedical material[J]. SCIENTIFIC REPORTS,2017,7:-. |
APA | Wang, ZW.,Ma, YH.,Wei, J.,Chen, X.,Cao, LH.,...&Su, JC.(2017).Effects of sintering temperature on surface morphology/microstructure, in vitro degradability, mineralization and osteoblast response to magnesium phosphate as biomedical material.SCIENTIFIC REPORTS,7,-. |
MLA | Wang, ZW,et al."Effects of sintering temperature on surface morphology/microstructure, in vitro degradability, mineralization and osteoblast response to magnesium phosphate as biomedical material".SCIENTIFIC REPORTS 7(2017):-. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Effects of sintering(3167KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment