CAS OpenIR  > 中科院上海应用物理研究所2011-2019年
Catalytically active ceria-supported cobalt-manganese oxide nanocatalysts for oxidation of carbon monoxide
Wang, X; Du, LY; Du, M; Ma, C; Zeng, J; Jia, CJ; Si, R
2017
Source PublicationPHYSICAL CHEMISTRY CHEMICAL PHYSICS
ISSN1463-9076
Volume19Issue:22Pages:14533-14542
Subtype期刊论文
AbstractA low-concentration cobalt (similar to 6 at%) and manganese (similar to 3 at%) bimetallic oxide catalyst supported on ceria nanorods (CoMnOx/CeO2), as well as its related single metal oxide counterparts (CoOx/CeO2 and MnOx/CeO2) was synthesized via a deposition-precipitation approach. The fresh samples after air-calcination at 400 C-omicron were tested under the reaction conditions of CO oxidation, and showed the following order of reactivity: CoMnOx/CeO2 > CoOx/CeO2 > MnOx/CeO2. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data identified that the structure of the CeO2 support was maintained during deposition of metal (Co, Mn) ions while the corresponding vis-Raman spectra verified that more oxygen vacancies were created after deposition-precipitation than those in pure ceria nanorods. Aberration-corrected, high-angle, annular dark-field scanning transmission electron microscopy (HAADF-STEM) images with the help of electron energy loss spectroscopy (EELS) analyses determined two types of cobalt species, i.e. ultra-fine clusters (< 2 nm) and smaller nanocrystals (up to 5 nm) in CoOx/CeO2 while only bigger nanostructures (similar to 10 nm) of cobalt-manganese oxides in CoMnOx/CeO2. X-ray absorption fine structure (XAFS) measurements demonstrated the presence of a cubic Co3O4 phase in all the cobalt-based catalysts. The fitting results of the extended X-ray absorption fine structure (EXAFS) indicated that the introduction of the secondary metal (Mn) oxide significantly enhanced the two-dimensional growth of cobalt oxide nanostructures on the surface of CeO2. Therefore, the enhanced activity of CO oxidation reaction over the bimetallic cobalt-manganese oxide nanocatalyst can be attributed to the higher crystallinity of the Co3O4 phase in this work.
KeywordTemperature Co Oxidation Water-gas Shift Calcination Temperature Selective Synthesis Mixed-oxide Catalysts Oxygen Co3o4 Performance Reactivity
DOI10.1039/c7cp02004j
Indexed BySCI
WOS KeywordTEMPERATURE CO OXIDATION ; WATER-GAS SHIFT ; CALCINATION TEMPERATURE ; SELECTIVE SYNTHESIS ; MIXED-OXIDE ; CATALYSTS ; OXYGEN ; CO3O4 ; PERFORMANCE ; REACTIVITY
Language英语
WOS IDWOS:000403327200036
Citation statistics
Cited Times:8[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.sinap.ac.cn/handle/331007/28571
Collection中科院上海应用物理研究所2011-2019年
Recommended Citation
GB/T 7714
Wang, X,Du, LY,Du, M,et al. Catalytically active ceria-supported cobalt-manganese oxide nanocatalysts for oxidation of carbon monoxide[J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS,2017,19(22):14533-14542.
APA Wang, X.,Du, LY.,Du, M.,Ma, C.,Zeng, J.,...&Si, R.(2017).Catalytically active ceria-supported cobalt-manganese oxide nanocatalysts for oxidation of carbon monoxide.PHYSICAL CHEMISTRY CHEMICAL PHYSICS,19(22),14533-14542.
MLA Wang, X,et al."Catalytically active ceria-supported cobalt-manganese oxide nanocatalysts for oxidation of carbon monoxide".PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19.22(2017):14533-14542.
Files in This Item:
File Name/Size DocType Version Access License
Catalytically active(2612KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Wang, X]'s Articles
[Du, LY]'s Articles
[Du, M]'s Articles
Baidu academic
Similar articles in Baidu academic
[Wang, X]'s Articles
[Du, LY]'s Articles
[Du, M]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Wang, X]'s Articles
[Du, LY]'s Articles
[Du, M]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Catalytically active ceria-supported cobalt-manganese oxide nanocatalysts for oxidation of carbon monoxide.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.