CAS OpenIR  > 中科院上海应用物理研究所2011-2018年
Global Lambda hyperon polarization in nuclear collisions
Adamczyk, L; Adkins, JK; Agakishiev, G; Aggarwal, MM; Ahammed, Z; Ajitanand, NN; Alekseev, I; Anderson, DM; Aoyama, R; Aparin, A; Arkhipkin, D; Aschenauer, EC; Ashraf, MU; Attri, A; Averichev, GS; Bai, X; Bairathi, V; Behera, A; Bellwied, R; Bhasin, A; Bhati, AK; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, LC; Bordyuzhin, IG; Bouchet, J; Brandenburg, JD; Brandin, AV; Brown, D; Bunzarov, I; Butterworth, J; Caines, H; Sanchez, MCDLB; Campbell, JM; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chankova-Bunzarova, N; Chatterjee, A; Chattopadhyay, S; Chen, X; Chen, JH; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, HJ; Das, S; De Silva, LC; Debbe, RR; Dedovich, TG; Deng, J; Derevschikov, AA; Didenko, L; Dilks, C; Dong, X; Drachenberg, JL; Draper, JE; Dunkelberger, LE; Dunlop, JC; Efimov, LG; Elsey, N; Engelage, J; Eppley, G; Esha, R; Esumi, S; Evdokimov, O; Ewigleben, J; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Federicova, P; Fedorisin, J; Feng, Z; Filip, P; Finch, E; Fisyak, Y; Flores, CE; Fulek, L; Gagliardi, CA; Garand, D; Geurts, F; Gibson, A; Girard, M; Grosnick, D; Gunarathne, DS; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Hamad, AI; Hamed, A; Harlenderova, A; Harris, JW; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, GW; Horvat, S; Huang, T; Huang, B; Huang, X; Huang, HZ; Humanic, TJ; Huo, P; Igo, G; Jacobs, WW; Jentsch, A; Jia, J; Jiang, K; Jowzaee, S; Judd, EG; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, HW; Keane, D; Kechechyan, A; Khan, Z; Kikola, DP; Kisel, I; Kisiel, A; Kochenda, L; Kocmanek, M; Kollegger, T; Kosarzewski, LK; Kraishan, AF; Kravtsov, P; Krueger, K; Kulathunga, N; Kumar, L; Kvapil, J; Kwasizur, JH; Lacey, R; Landgraf, JM; Landry, KD; Lauret, J; Lebedev, A; Lednicky, R; Lee, JH; Li, X; Li, C; Li, W; Li, Y; Lidrych, J; Lin, T; Lisa, MA; Liu, H; Liu, P; Liu, Y; Liu, F; Ljubicic, T; Llope, WJ; Lomnitz, M; Longacre, RS; Luo, S; Luo, X; Ma, GL; Ma, L; Ma, YG; Ma, R; Magdy, N; Majka, R; Mallick, D; Margetis, S; Markert, C; Matis, HS; Meehan, K; Mei, JC; Miller, ZW; Minaev, NG; Mioduszewski, S; Mishra, D; Mizuno, S; Mohanty, B; Mondal, MM; Morozov, DA; Mustafa, MK; Nasim, M; Nayak, TK; Nelson, JM; Nie, M; Nigmatkulov, G; Niida, T; Nogach, LV; Nonaka, T; Nurushev, SB; Odyniec, G; Ogawa, A; Oh, K; Okorokov, VA; Jr, DO; Page, BS; Pak, R; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, AM; Pruthi, NK; Przybycien, M; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Ray, RL; Reed, R; Rehbein, MJ; Ritter, HG; Roberts, JB; Rogachevskiy, OV; Romero, JL; Roth, JD; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, NR; Sahu, PK; Salur, S; Sandweiss, J; Saur, M; Schambach, J; Schmah, AM; Schmidke, WB; Schmitz, N; Schweid, BR; Seger, J; Sergeeva, M; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, PV; Shao, M; Sharma, A; Sharma, MK; Shen, WQ; Shi, Z; Shi, SS; Shou, QY; Sichtermann, EP; Sikora, R; Simko, M; Singha, S; Skoby, MJ; Smirnov, N; Smirnov, D; Solyst, W; Song, L; Sorensen, P; Spinka, HM; Srivastava, B; Stanislaus, TDS; Strikhanov, M; Stringfellow, B; Sugiura, T; Sumbera, M; Summa, B; Sun, Y; Sun, XM; Sun, X; Surrow, B; Svirida, DN; Tang, AH; Tang, Z; Taranenko, A; Tarnowsky, T; Tawfik, A; Thader, J; Thomas, JH; Timmins, AR; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, RE; Tribedy, P; Tripathy, SK; Trzeciak, BA; Tsai, OD; Ullrich, T; Underwood, DG; Upsal, I; Van Buren, G; Van Nieuwenhuizen, G; Vasiliev, AN; Videbaek, F; Vokal, S; Voloshin, SA; Vossen, A; Wang, G; Wang, Y; Wang, F; Wang, Y; Webb, JC; Webb, G; Wen, L; Westfall, GD; Wieman, H; Wissink, SW; Witt, R; Wu, Y; Xiao, ZG; Xie, W; Xie, G; Xu, J; Xu, N; Xu, QH; Xu, YF; Xu, Z; Yang, Y; Yang, Q; Yang, C; Yang, S; Ye, Z; Ye, Z; Yi, L; Yip, K; Yoo, IK; Yu, N; Zbroszczyk, H; Zha, W; Zhang, Z; Zhang, XP; Zhang, JB; Zhang, S; Zhang, J; Zhang, Y; Zhang, J; Zhang, S; Zhao, J; Zhong, C; Zhou, L; Zhou, C; Zhu, X; Zhu, Z; Zyzak, M
2017
Source PublicationNATURE
ISSN0028-0836
Volume548Issue:7665Pages:62-+
Subtype期刊论文
AbstractThe extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity(1). Non-central collisions have angular momenta of the order of 1,000., and the resulting fluid may have a strong vortical structure(2-4) that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity(5). However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Lambda baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Lambda and (Lambda) over bar hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions(6). (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement(7) that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid(8) created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the strong force.
KeywordHeavy-ion Collisions Vorticity
DOI10.1038/nature23004
WOS KeywordHEAVY-ION COLLISIONS ; VORTICITY
Indexed BySCI
Language英语
WOS IDWOS:000406831700036
Citation statistics
Cited Times:105[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.sinap.ac.cn/handle/331007/28669
Collection中科院上海应用物理研究所2011-2018年
Recommended Citation
GB/T 7714
Adamczyk, L,Adkins, JK,Agakishiev, G,et al. Global Lambda hyperon polarization in nuclear collisions[J]. NATURE,2017,548(7665):62-+.
APA Adamczyk, L.,Adkins, JK.,Agakishiev, G.,Aggarwal, MM.,Ahammed, Z.,...&Zyzak, M.(2017).Global Lambda hyperon polarization in nuclear collisions.NATURE,548(7665),62-+.
MLA Adamczyk, L,et al."Global Lambda hyperon polarization in nuclear collisions".NATURE 548.7665(2017):62-+.
Files in This Item: Download All
File Name/Size DocType Version Access License
Global Lambda hypero(1644KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Adamczyk, L]'s Articles
[Adkins, JK]'s Articles
[Agakishiev, G]'s Articles
Baidu academic
Similar articles in Baidu academic
[Adamczyk, L]'s Articles
[Adkins, JK]'s Articles
[Agakishiev, G]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Adamczyk, L]'s Articles
[Adkins, JK]'s Articles
[Agakishiev, G]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Global Lambda hyperon polarization in nuclear collisions.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.