Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron
Hu, BW; Chen, GH; Jin, CG; Hu, J; Huang, CC; Sheng, J; Sheng, GD; Ma, JY; Huang, YY
2017
发表期刊JOURNAL OF HAZARDOUS MATERIALS
ISSN0304-3894
卷号336期号:-页码:214-221
文章类型期刊论文
摘要Herein, a promising titanate nanotubes (TNT) anchored nanoscale zero-valent iron (NZVI) nanocomposite (NZVI/TNT) was synthesized, characterized and used for the enhanced scavenging of Cr(VI) and Se(VI) from water. The structural identification indicated that NZVI was uniformly loaded on TNT, thereby, the oxidation and aggregation of NZVI was significantly minimized. The macroscopic experimental results indicated that NZVI/TNT exhibited higher efficiency as well as rate on Cr(VI) and Se(VI) scavenging resulted from the good synergistic effect between adsorption and reduction. Besides, TNT can weaken the inhibitory effect of co-existing humic acid (HA) and fulvic acid (FA) on the scavenging of Cr(VI) and Se(VI) by NZVI, since TNT showed strong adsorption for HA and FA that inhibit potential reactivity. XPS analysis suggested that surface-bound Fe(II) played a critical role in Cr(VI) and Se(VI) scavenging. XANES analysis demonstrated that TNT acted as a promoter for the almost complete transformation of Cr(VI) into Cr(III), and Se(VI) into Se(0)/Se(-II) in NZVI system. EXAFS analysis indicated that TNT acted as a scavenger for insoluble products, and thus more reactive sites can be used for Cr(VI) and Se(VI) reduction. The excellent performance of NZVI/TNT provide a potential material for purification and detoxification of Cr(VI) and Se(VI) from wastewater. (C) 2017 Elsevier B.V. All rights reserved.
关键词Layered Double Hydroxide Natural Organic-matter Humic Substance Interaction Electroplating Waste-water Reduced Graphene Oxides Chromium Vi Removal Weak Magnetic-field Zerovalent Iron Aqueous-solution Carbon Nanotubes
DOI10.1016/j.jhazmat.2017.04.069
关键词[WOS]LAYERED DOUBLE HYDROXIDE ; NATURAL ORGANIC-MATTER ; HUMIC SUBSTANCE INTERACTION ; ELECTROPLATING WASTE-WATER ; REDUCED GRAPHENE OXIDES ; CHROMIUM VI REMOVAL ; WEAK MAGNETIC-FIELD ; ZEROVALENT IRON ; AQUEOUS-SOLUTION ; CARBON NANOTUBES
收录类别SCI
语种英语
WOS记录号WOS:000403519600024
引用统计
被引频次:19[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.sinap.ac.cn/handle/331007/28723
专题中科院上海应用物理研究所2011-2018年
推荐引用方式
GB/T 7714
Hu, BW,Chen, GH,Jin, CG,et al. Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron[J]. JOURNAL OF HAZARDOUS MATERIALS,2017,336(-):214-221.
APA Hu, BW.,Chen, GH.,Jin, CG.,Hu, J.,Huang, CC.,...&Huang, YY.(2017).Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron.JOURNAL OF HAZARDOUS MATERIALS,336(-),214-221.
MLA Hu, BW,et al."Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron".JOURNAL OF HAZARDOUS MATERIALS 336.-(2017):214-221.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Macroscopic and spec(2653KB)期刊论文作者接受稿开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, BW]的文章
[Chen, GH]的文章
[Jin, CG]的文章
百度学术
百度学术中相似的文章
[Hu, BW]的文章
[Chen, GH]的文章
[Jin, CG]的文章
必应学术
必应学术中相似的文章
[Hu, BW]的文章
[Chen, GH]的文章
[Jin, CG]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。